Rewriting on cyclic structures: Equivalence between the operational and the categorical description

نویسندگان

  • Andrea Corradini
  • Fabio Gadducci
چکیده

We present a categorical formulation of the rewriting of possibly cyclic term graphs, based on a variation of algebraic 2-theories. We show that this presentation is equivalent to the well-accepted operational deenition proposed by Barendregt et alii|but for the case of circular redexes, for which we propose (and justify formally) a diierent treatment. The categorical framework allows us to model in a concise way also automatic garbage collection and rules for sharing/unsharing and folding/unfolding of structures, and to relate term graph rewriting to other rewriting formalisms. R esum e. Nous pr esentons une formulation cat egorique de la r e ecriture des graphes cycliques des termes, bas ee sur une variante de 2-theorie alg ebrique. Nous prouvons que cette pr esentation est equivalente a la d eenition op erationnelle propos ee par Barendregt et d'autres auteurs, mais pas dons le cas des radicaux circulaires, pour lesquels nous proposons (et justiions formellement) un traitement dii erent. Le cadre cat egoriel nous permet de modeler egalement la \garbage collection" automatique, et des r egles de \sharing/unsharing" et \folding/unfolding" des structures. En outre, ce cadre nous permet d'exploit e pour associer la r e ecriture des graphes des termes a d'autres formalismes de r e ecriture.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rewriting on cyclic structures ?

We present a categorical formulation of the rewriting of possibly cyclic term graphs, and the proof that this presentation is equivalent to the well-accepted operational deenition proposed in 3]|but for the case of circular redexes, for which we propose (and justify formally) a diierent treatment. The categorical framework, based on suitable 2-categories, allows to model also automatic garbage ...

متن کامل

On outward and inward productions in the categorical graph-grammar approach and ∆-grammars

We consider the relationship between three ways of defining graph derivability. That the traditional double-pushout approach and Banach’s inward version are equivalent in the case of injective left-hand side is proved in a purely categorical setting. In the case of noninjective left-hand sides, equivalence can be shown in special categories if the righthand side is injective. Both approaches ha...

متن کامل

A note on outward and inward productions in the categorical graph-grammar approach and Delta-grammars

By proving the correspondence between the usual double-pushout approach and Banach’s inward version in a purely categorical setting, we can extend the latter to noninjective left-hand sides. In the injective case, Banach’s point of view establishes a close relationship between the categorical approach and Kaplan’s ∆-grammars allowing a slight generalization of ∆-grammars and making them an oper...

متن کامل

On the Equivalence Between CMC and TIM

In this paper we present the equivalence between TIM a machine developed to implement lazy functional programming languages and the set of Categorical Multi Combinators a rewriting system developed with similar aims

متن کامل

A Calculus of Coroutines

We describe a simple but expressive calculus of sequential processes, represented as coroutines. We show that this calculus can be used to express a variety of programming language features including procedure calls, labelled jumps, integer references and stacks. We describe the operational properties of the calculus using reduction rules and equational axioms. We describe a notion of categoric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • ITA

دوره 33  شماره 

صفحات  -

تاریخ انتشار 1999